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Model system

@ A single particle x(t) (quantum or classical)

@ In a space-periodic energy landscape V(x) (maybe
time-dependent)

@ In the presence of dissipation (or not)
@ Under time-periodic driving F(t), F(t+ T) = F(t)
Ratchet:
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What is sub-Fourier sensing?

e Fourier transform (1820)

/ dw lwt

et = cos(wt) + isin(wt)
2r

W= ——

T

Joseph Fourier
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What is sub-Fourier sensing?

e Fourier transform (1820)
F(t) = / duo F(w)et

o Fourier inequality
AwAt > 27

Aw: width of F(w)
At: width of £(t)

@ Fourier limit: Two frequencies cannot be
distinguished before a time proportional
to the inverse of their difference (?)
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What is sub-Fourier sensing?

A sensor based on resonances:

e For every periodic driving F(t),
2T

F(t+T)=F(t), w= -
@ ...we have the system response (v)(w):

(v) = lim L Tsdtv(t)

Ts—o0 TS 0
Ts := interaction or observation time

@ At a resonance wy:
o Ideal response: (infinite-time response)
o (v)(w)=0 ifw# woy (near wo)
o (V(w)#0 ifw=uwo
o Real response: (finite-time response)

o (v)(w) with a width Aw about wp.
o Aw — 0 when T; — oo (observation time)
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What is sub-Fourier sensing?

@ Sub-Fourier sensing: (non-linear systems)

2
Aw < %T
Example: s

quantum J-kicked-rotor

Cold atoms exposed to N pulses of
off-resonant standing waves of light

Szriftgiser et al, PRL 89, 224101 (2002).
Talukdar et al, PRL 105, 054103 (2010).
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What is sub-Fourier sensing?

@ Sub-Fourier sensing: (non-linear systc
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Example:
quantum d-kicked-rotor

Cold atoms exposed to N pulses of
off-resonant standing waves of light

Szriftgiser et al, PRL 89, 224101 (2002).
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FIG. 1. Below the Fourier limit. (a) Experimental measure-

ment of the zero-velocity atom number, p(0), as a function of
the ratio r= f,/f; of the two excitation frequencies.
Parameters: f; = 18 kHz, K =42, N, = 10, 7= 3 us and in
order to avoid pulses overlap we set ¢ = 7. Averaging:
100 times. (b) Fy5(r), for comparison with the Fourier trans-
form of the kick sequence (amplitude and offset are arbitrary
for Fy).

1
AfT = -1

38 ®
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Talukdar et al, PRL 105, 054103 (2010).
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FIG. 1. Experimentally measured fidelity distribution
due to five kicks of strength ¢, = 0.8 followed by a
shifted kick of strength 5¢,. The mean energy (triangle
same five kick rotor is shown for comparison. Numeric
lations of the experiment for a condensate with momentt
0.06hG are also plotted for fidelity (dashed line) ar
energy (solid line). The amplitude and offset of the s
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What is sub-Fourier sensing?

@ Sub-Fourier sensing: (non-linear systems)

27
A it
w <K T
A second example:

classical rocked ratchet with
biharmonic driving

F(t) = Fy cos(wyt) + Fp cos(wat + 6)
Resonances at wy = (p/q)w
SubFourier sensitivity:

Awyr = 2—”

Casado-Pascual, DC & Renzoni,

PRE 88, 062919 (2013).
DC, Casado-Pascual, & Renzoni,

PRL 112, 174102 (2014).
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What is sub-Fourier sensing?

@ Sub-Fourier sensing: (non-linear svstems)
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355113

A second example:
classical rocked ratchet with
biharmonic driving

F(t) = Fy cos(wit) + F, cos(

Resonances at Wy = (p/q)wl 141588 T 7icm23.14|1594 3141597
SubFourier sensitivity:
o FIG. 1 (color online). Current vs driving frequency @, for the
AWQ = ﬁ overdamped system (1) with the driving F, and F, = 5.75.

Reduced units are defined in the simulations such that
X Uy=k=y=w; = 1. Empty and filled diamonds correspond
Casado-Pascual, DC & Renzoni, T, = 10* and 10%, respectively. The lines are the predictions

given by (6) with ¢ = 113, p = 355, and vy = 1/(2g). The
PRE 88, 062919 (2013)' . horizontal bars depict the frequency width (7), showing a
DC, Casado-Pascual, & Renzoni, resolution 113 times smaller than that expected from the Fourier

PRL 112, 174102 (2014). width 21/ T,
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The quantum ratchet

No dissipation, H = p?/(2m) + V/(x) — xF(t)
Bose-Einstein condensate (ultracoldatoms)

[Science 326, 1241 (2009)]
Space-periodic V(x + L) = V(x) = Bloch states (k)
Time-periodic driving F(t + T) = F(t) = Floquet states ()
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The quantum ratchet

@ Space-periodic V(x + L) = V/(x) = Bloch states (k)
e Time-periodic driving F(t + T) = F(t) = Floquet states (&)

) 1 Oe,
@ Bloch-Floquet states with current v, = —
h Ok
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V(x) = Vocos(2mx/L), F(t) = Ficos(wit) + F2cos(wat + 0), wr = 2w1, 0 = —7m/2
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The quantum ratchet: Avoided crossings

“2.6981 (@) :
Sn i '
22701 N /
\\\ ’/
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2,704
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. ..
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0

Denisov, Morales-Molina, Flach &Hanggi, Phys. Rev. A 75 063424 (2007)
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The quantum ratchet: Avoided crossings

—2.6081 (@)
€n —9
-2.701+
\\l//
~2.704

Use for sub-Fourier sensors?
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Exploiting avoided crossings: the theory

Frequency dependence near resonances?

@ Bloch-Floquet sta'gges:
Va(k,0) = + [2" " dt (un(t)(p/m)|vok.n(t))
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Frequency dependence near resonances?
° BIoch—Fquuet states:

Va(k,0) = L [ Tdt(y a(t)|(p/m) [1okn(t))

o Finite-time current: vy, = & ft°+T5dt v(t)

v(t) = (W(O)](p/m(2)
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Frequency dependence near resonances?
° BIoch—Fquuet states:
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Exploiting avoided crossings: the theory

Frequency dependence near resonances?
° BIoch—Fquuet states:

Va(k,0) = L [ Tdt(y a(t)|(p/m) [1okn(t))

o Finite-time current: vy, = & ft°+T5dt v(t)

v(t) = (W(O)](p/m(2)

@ Asymptotic approximation: DC & Renzoni, PRE 97, 062139 (2018).

1 Oo+Awy Ts . 5 ~
~ n k ) 3
Vo~ T /60 do > |Cigonl v( 0 9)

ko,n

ALUQZWQ—LULD/C], 00—9+w2t0,

;
k(&) = ko + limaw,—0 ftoﬁ LAWZTJdt’F(t’)/h,
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Exploiting avoided crossings: the implementation
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Exploiting avoided crossings: the implementation
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Exploiting avoided crossings: the implementation

Vo=FR=FR=w=10=—-7/2 10xbetter
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Exploiting avoided crossings: the implementation

Wwo=F=1 Fpb=24 w; =12, kg =0.4236, § = —1.247
T T T T T =

-0.109
i —2 |
49
o 011 =
w 15
0.111F :

2 | , ] . |
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Demonstration
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Y(x,t = —2T) =const., Fy during 2T such as to start from the
right ko. Top (+) has # = —1.0851, bottom (—) has § = —1.0845.
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@ Model system

© What is sub-Fourier Sensing?

e Quantum ratchet

@ The quantum ratchet: Avoided crossings

@ Exploiting avoided crossings: the theory

@ Exploiting avoided crossings: implementation

Thank you for you attention!
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